

Microsoft
[bookmark: _GoBack]




	

	Payment Methods Reverse API Manual
Chen Tsofi – chents@microsoft.com 
Version 1.0
6/12/2019





Contents
Introduction	3
Terminology	3
Scenario Examples	3
Onboarding of new Payment Service Providers	4
Pre-requisites for PSPs	4
Onboarding process	4
Key / Certificate Management and Authentication	5
Payment Method Discovery	6
Payment Instrument Payload	6
Payment Instrument Transaction Reference Payload	6
Enrollment	6
Determining which enrollment methods to implement	7
API Reference	7
Introduction	7
Echo API	8
Capture	8
Subscriptions	8
Refund	8
Reverse	8
Query	9
SendChallengeSMS	9
ValidateChallengeSMS	9
Enroll	9
De-Enroll	9
RedirectToEnroll	9
RedirectToDeEnroll	9
Async Notifications	9
URL	9
Request body	10
Response body	11
Example	11
Reconciliation	13
Appendix	14
Sequence Flows	14
Successful enrollment flows	14
Open Questions / To-do	15
Version Control	15





[bookmark: _Toc500762439]Introduction
This document describes the set of Online APIs that Microsoft’s Payment Service Provider (PSP) or Integrator partner will implement to enable processing of various payment methods for Microsoft.
[bookmark: _Toc500762440]Terminology
1. Payment Service Provider – An entity that integrates directly to Microsoft’s Universal Store payments platform
2. Payment Method Type – A payment instrument type such as debit or credit card, direct debit, bank transfer, cash, invoice, ewallet, etc.
3. Payment Method Brand (pmb) – An entity that is the originator of and own’s the payment method brand. Microsoft’s PSP partner is integrated either directly or indirectly to the pmb. Example of pmb includes: card network (Ex. Visa, MasterCard, etc.), offline payments cash networks (Ex. Efecty in Columbia, OXXO in Mexico, etc.), bank network (Ex. iDeal in Netherlands, SEPA Direct Debit in Germany, etc.) payment method consolidator (Ex. Sofort in Germany, DotPay in Poland, etc.), etc.
4. Subscription - Subscriptions are purchases that a user has authorized for periodic billing. From the Payment Service Provider’s perspective, they are like one-time purchases. The only additional information provided for a subscription is subscription identifier, frequency and number. All the charges for subscriptions would still be executed every month/day/year/etc by Microsoft, and Microsoft does not rely on the provider to establish the recurrence. The subscription data Microsoft will pass is just additional information about these charges. This is used in Payment Instruments where the is a legal need for the users to be able to view and cancel their subscriptions on the payment processor’s side (for example: American mobile-carrier-billing users on AT&T must be able to log on to their AT&T portal and view and cancel their subscriptions). This is naturally only a valid scenario for specific types of payment instruments.

[bookmark: _Toc500762441]Scenario Examples
Example 1: One-Time Purchase (OTP) of App from Windows10 Store
1. User browses through the Windows 10 Store and selects an app to purchase.
2. User is offered a variety of payment options and he selects the "Pay with LocalCountry-Bank transfer" payment method option.
3. The user is prompted to select his bank, and is then redirected to his bank portal. Once at the bank portal, the user is asked to provide credentials. Additionally, the user is taken through a two-factor authentication (2FA) step and upon successful verification, logs into the bank and completes purchase.
4. User is redirected back to the Microsoft Windows 10 Store, and begins download of the app

Example 2: One Time Purchase of game from Xbox console
1. User is in the Xbox console and selects a game to purchase.
2. User is offered a variety of payment options and he selects the "Pay with X-ewallet " payment method option.
3. The user is asked to provide their ewallet credentials.
4. User is authenticated and completes the purchases, and begins watching the movie

Example 3: Subscription (i.e., Recurring Billed) Purchase from Microsoft Web Store
1. User browses through the Microsoft Web Store and selects O365 (monthly) subscription for purchase.
2. User selects the default "LocalCountry-Credit Card" on file payment method option.
3. The user is prompted to provide CVV. Upon successful verification, the purchase is complete.
4. User begins to download O365
5. On an ongoing basis, the customer’s credit card is charged the recurring amount monthly

[bookmark: _Toc500762442]Onboarding of new Payment Service Providers

[bookmark: _Toc500762443]Pre-requisites for PSPs
The PSP must support the following platform capabilities:
· Idempotent transaction calls based on persistent identifier
· Standardized settlement and invoicing
· Echo (health check)
· Standard SSL/TLS connections over the Internet (no VPN / Private networks). The PSP shall support TLS version 1.2, and agree to update this support on an annual basis, in case newer versions become the norm.

[bookmark: _Toc500762444]Onboarding process
At the moment, the process of onboarding new payment providers will be manual.
The process of onboarding new providers consists of getting the following information from the providers:
· Supported Payment Methods and Markets (For example: for Payment Method Type "Credit Card", we support Visa in the US, MC in UK).
· For each PI that gets onboarded, the PSP must provide a list of the following supported capabilities from the capability list from the partners:
· Auth/Settle support (as opposed to immediate capture).
· Dynamic Merchant Descriptors and Dynamic MCC. If this is supported, the PSP shall use the values that are passed along in the charge requests. Otherwise, a predefined value shall be agreed on for these field with Microsoft (if needed).
· Refunds / Reversals.
· Chargebacks
· Transaction Querying. If supported, what is the minimum time to wait before querying.
· Subscriptions
· Installments
· Challenge
· Reconciliation (Offline Cash payments, for example, might need/support recon)
· In case of supporting recon, the PSP shall provide additional details regarding how to access the reconciliation files. Current options include:
· SFTP hosted by the PSP. The PSP shall provide the creds to connect to the server.
· Test support: Are emulated transactions supported? If yes:
· Would they require a separate endpoint?
· Would they require a separate certificate?
· Would they require specific fields to be set in the transaction payload?
· Do they support setting the expected responses in the call, to emulate errors as well as success calls?
· Do they have any specific requirements like specific amounts / accounts to use?
· Base URL for each of the supported Payment Methods in each market.
· In case of Encrypted payloads - Public Key for encryption.
· In case of Payment Methods with async Notifications - public portion of provider's client cert used for authenticating the notifications

The following information would be shared by Microsoft with the providers:
· Public Key for Microsoft client cert that is used to communicate with the provider
· Microsoft’s endpoints for notifications
 
MID (Merchant Identifier) setup:
[bookmark: _Hlk479580202]If a new MID is required (for example: a new PSP integration, or a new market being added which is determined to use a separate MID), Microsoft will pass the new MID name to the PSP – unless the PSP requires the name to be created on PSP’s side, in which case the PSP will pass the MID to Microsoft. If required, Microsoft shall pass bank account verification letters, company information, and various KYC forms as required by the PSP.

[bookmark: _Toc500762445]Key / Certificate Management and Authentication 

All calls from Microsoft to an implementation of the APIs described in this specification will be secured by Mutual Authentication. Microsoft will provide a client certificate in all its calls, and the implementer will provide a server certificate for their end. Microsoft and the implementer will exchange the public portions of their certificates ahead of time, so they can add each other's public keys. Each side should support two certificates at any given time to accommodate updates to keys. If this is the case, new certificates can be rolled out before the existing ones expire, so that each party can validate them without incurring any downtime.

Regarding Public Key / cert exchanges – either sending or accepting new public keys requires that the integrity of that public key must be verified by two independent channels. Signed S/MIME e-mails, phone calls, a third party secure e-mail system, couriers, web sites over TLS are examples that can be used to establish two independent public key integrity validations. Typically, the certificate thumbprint will be used to verify a match.

[bookmark: _Payment_Method_Discovery][bookmark: _Toc500762446]Payment Method Discovery

The offline discovery process that shall be used by PSPs that wish to onboard to Microsoft would be to use the publicly-accessible payment method discovery service to query the list of supported payment methods, along with additional information about what is supported for each payment method, enrollment information, payloads, etc.

The actual API specification and examples can be found on https://apidocs.microsoft.com/services/discoveryservice.


[bookmark: _Payment_Instruments_Discovery][bookmark: _Toc500762447]Payment Instrument Payload
Once a PSP decides to support a certain type of PI, the next step would be to determine if the PI is stored on file, and if so, what will be the payload that will be passed to the PSP to identify such a PI. Determining if the PI is stored on file is done by calling the Discovery service. The payload is guaranteed not to change in the future. Future versions with different payload might be described as new PI types. If the PI does not have any payload (For example, a redirection-based PI where all the information is collected by an external website) then the result will be empty/not found.

Example for querying the payload of Visa Credit Card in US: 
curl -X GET "https://paymentmethoddiscoveryservice.azurewebsites.net/paymentMethods/us/credit_card/visa" -H "accept: text/plain"


[bookmark: _Toc500762448]Payment Instrument Transaction Reference Payload
For Offline Payments only, a payload needs to be sent back to Microsoft as a response for the transaction, with user-facing information. The payload will be a Json string containing fields that are predefined and can be queried using this endpoint.


[bookmark: _Toc500762449]Enrollment
Some payment methods require a set of enrollment steps to take place in order to set up the PI for a user. For example, a certain eWallet might require a user to pass his/her username/password through an API in order to get a “billing token” which will be used as the PI payload for subsequent calls. This process is referred to as the Enrollment process.
Some payment methods support enrollment through APIs, as the previous example, while other payment methods require a user redirection to an external website (usually a redirection from the user to the PSP and from the PSP onwards to the underlying payment method’s website to enter credentials). The PSP is able to differentiate between these types based on the Enrollment Type field which is specified in Payment Method Discovery.
In case the enrollment is of type API, the Discovery service could be queried to get the details on the parameters that are expected to be passed as enrollment request/response pairs for each step of the enrollment.

[bookmark: _Toc500762450]Determining which enrollment methods to implement

Possible values:
 
	Enrollment type
	Description
	API(s) to implement
	Enrollment details

	(empty)
	This PI type does not have an enrollment process (will not be stored on file and does not require a set-up stage)
	-
	(empty)

	API
	This PI type has one or more API methods which should be called in sequence to perform an enrollment
	Enroll,
DeEnroll
	The is a need to query the public document which outlines enrollment for this PI, as described in the Enrollment chapter

	Redirection
	This PI type has an enrollment procedure that can only be done by redirecting the users to an external website to perform authentication
	RedirectToEnroll,
RedirectToDeEnroll
	 






[bookmark: _Toc500762451]API Reference

[bookmark: _Toc500762452]Introduction

Once the discovery steps have been followed, the next step for a PSP would be to implement the various APIs which handle PI transactions, enrollment, service health, etc.

All APIs must use standard HTTP codes for communicating statuses, and support the following HTTP headers:
	Http Header
	Description

	x-correlation-id
	GUID used to track the request from Microsoft to the PSP.

	x-api-version
	API version of the contract. The current version is “v1”.

	accept-language
	The language / locale that might be passed with the request, in cases where localization is needed.


Note: All request and response parameters mentioned in this spec are mandatory unless explicitly stated as optional in the description.

All requests and responses throughout this document will be in JSON format, unless specifically stated otherwise.

The specific details for each API call, including URL structure, payload, response details and response codes can be found on https://apidocs.microsoft.com/services/paymentservices 


[bookmark: _Toc500762453]Echo API
The purpose of this API is to ensure the connection between Microsoft and the Payment Service Provider(PSP) is healthy. As with all API calls, the client certificate that Microsoft will provide must be present, so we can use this as a test of certificate validity and integration. This API will be called continuously by Microsoft.

[bookmark: _Toc500762454]Capture
This API takes the payload to initiate a funds capture. The request body contains information about the merchant, the product(s), the payment instrument, and the payment terms. The capture call will specify if this is an online capture (i.e. through an API call), offline capture (i.e. requiring the user to do another physical operation to complete the purchase, such as Boleto Bancario) or a redirection capture (i.e. the user gets redirected to another website to complete the purchase, such as an online bank transfer).
Furthermore, this call will specify if this call is an “auth” call, which places a hold on funds without charging, or a “settle” call which does the actual charge.

[bookmark: OLE_LINK41][bookmark: OLE_LINK42]If there are timeouts, a transaction may be retried with the same transaction Id, so any implementation of this API must support idempotency.

[bookmark: _Toc500762455][bookmark: _Toc444701464]Subscriptions 
· Subscription renewals may be re-attempted if the error is temporary (Insufficient balance etc.) or the call timed out.
· Subscriptions will be cancelled if the error is a hard error, e.g.: Account closed, or Subscription Cancelled.
If the payment method brand contractually handles customer support, it can allow the customer to revoke authorization for further renewals. In such scenarios, any further renewals must be declined with the “Subscription Cancelled” error code.
[bookmark: _POST_Response_–][bookmark: _POST_Response_–_3][bookmark: _POST_Response]
[bookmark: _Toc500762456]Refund
This API will be used to refund a previously settled transaction. The request body contains the merchant account id and shopper reference required for the refund request. Each refund attempt is uniquely identified by a refund transaction id. If there are timeouts, a transaction may be retried with the same transaction Id, so any implementation of this API must support idempotency.

[bookmark: _Toc500762457]Reverse
This API will be used to reverse a previous transaction. The previous transaction can be an auth request which will result in the auth being removed, or a charge request which will result in the funds getting returned to the user. Each reverse attempt is uniquely identified by a transaction id. If there are timeouts, a transaction may be retried with the same transaction Id, so any implementation of this API must support idempotency. A reversal cannot be made on a partial amount.

[bookmark: _Toc500762458]Query
This API will be used to query the status of a previous request. It will typically be invoked when the original request has timed out and Microsoft does not know the current status of the request. 

[bookmark: _Toc500762459]SendChallengeSMS
This API will be used in cases where a payment method supports payment-method-initiated verification message to be sent to a user. This could be used in cases where Microsoft’s internal risk/fraud detection rules signal that we need to verify a transaction with a user.
 
[bookmark: _Toc500762460]ValidateChallengeSMS
This API will be used in conjunction with SendChallengeSMS to complete the user verification challenge. Once a user receives an SMS with a one-time PIN, the user shall enter it in one of Microsoft’s properties, and a call to ValidateChallengeSMS will be made to validate whether the PIN is correct. Note – at no point does Microsoft hold the correct PIN.
 
[bookmark: _Toc500762461]Enroll
This API will be used to perform a single enrollment step in the process of getting a user’s PI to be ready for use by Microsoft in subsequent calls.
 
[bookmark: _Toc500762462]De-Enroll
This API will be used to perform de-enrollment for an existing PI.
 
[bookmark: _Toc500762463]RedirectToEnroll
This API will be used to redirect the user to an external enrollment page.
 
[bookmark: _Toc500762464]RedirectToDeEnroll
This API will be used to redirect the user to an external de-enrollment page.
 
[bookmark: _Toc500762465]Async Notifications
Some transaction and enrollment calls are asynchronous by nature and require a callback from PSP to Microsoft to notify when an operation concludes. 
All async notifications should be sent with a client certificate which uniquely identifies the PSP. The notifications can pertain to Account-related (async enrollment) updates or transaction-related updates.
	

[bookmark: _Toc500762470]Reconciliation

Reconciliation is the process of matching the transactions that were recorded on Microsoft’s side with what was observed on the PSP’s side in order to see that all transactions are accounted for and to understand what are the fees associated with each transaction and in some cases what is the balance that should be transferred from the PSP to Microsoft. For more information on the reconciliation process, please see https://aka.ms/paymentsReconciliation


[bookmark: _Toc500762471]Appendix
[bookmark: _Toc500762472]Sequence Flows
[bookmark: _Toc500762473]Successful enrollment flows





[bookmark: _Toc500762475]Version Control

	Version
	Updated Date
	Key changes
	

	V0.1
	March 2017
	Initial version
	

	V0.2
	April 2017
	Terminology
· Added clarification for Subscription
Key / Cert Management
· Added more information about Public Key exchange requirements
· Added TLS 1.2 requirement to the Pre-reqs.
Onboarding
· Added more details on MID setup and added Dynamic Descriptor/MCC to the capabilities ask.
· Added Reverse to capabilities ask.
· Added Auth to capabilities ask.
Payment Instruments Discovery
· Added Country parameter to the request
· Added supportedBrands to the response
Payment Instrument Payload
· Renamed paymentInstrumentName to brand
· Removed length from response
Transaction Reference Discovery
· Added this new section
Enrollment
· Renamed paymentInstrumentName to brand
Capture
· Added merchantCategoryCode
Capture, Refund, Reverse
· Separated transactionId into a two fields: transactionId and merchantReferenceNumber
Async notifications
· Added Chargeback and ChargebackReversal event types
Other Changes
· Removed isTest and Test support from this document. This will be followed up on a separate doc.
	

	V0.3
	May 2017
	Refund
· Added PSP transaction ID
Query
· Changed MRN to TransactionId
Capture
· Changed transactionReference to type “object”
Async notifications
· Added PreChargeback event
Response Codes
· Incorrect Challenge was expanded to include Incorrect CVV and is now a valid error code for capture requests.
· Account Closed was expanded to include expired cards.
· Changed Response Codes from numeric value to string
· SystemError / PaymentMethodSystemError / Timeout added as possible results for ValidateChallengeSms API
Recon file format
· Added TransactionId
Removed Brands and Payment Method Types from Appendix
Removed all Transaction API details and Response Codes from this documents. They are now hosted on Swagger, and can be found on http://aka.ms/PaymentsReverseAPI 
	

	
	October 2017
	Added some more description to the reconciliation file format and added BalanceTransferTo and BalanceTrasferFrom types.
	

	V0.4
	December 2017
	Removed all APIs, Discovery Service info, and Recon info (all of these are available online now).
	

	V1.0
	January 2018
	Removed notification service APIs and open questions section.
	





1

image1.emf
User User

Add PI (PIType,

PIName, Market)

Provider Provider

Enter Enrollment Details

Determine PSP

Processor Processor

Get PIInfo

(PIType)

PI 

Discovery

PI 

Discovery

PIInfo

Microsoft Microsoft

POST ProviderInfo.BaseUrl + "/RedirectToEnroll"

(PIType, PIName, Market)

RedirectionURL

Redirect User to RedirectionURL

Potential

calls to

processor

OK

PI Payload

This is defined in PIDL doc referenced by

PIInfo.Public.PaymentInstumentDefinition

Create PI with payload

OK

Generate UI

step i details

Potential

calls to

processor

OK

Enrollment Response

If i == enrollment step count, Create PI & store PI payload

OK

Get enrollment

doc (PIInfo, i)

Collect details

for step i

POST ProviderInfo.BaseUrl + "/Enroll"

(enrollmentStep = i, 

payload = processedPayload)


Microsoft_Visio_Drawing.vsdx

PIInfo.EnrollmentType == “Redirection”


PIInfo.Private.EnrollmentType == “API”


LOOP

User
Add PI (PIType,
PIName, Market)
Provider
Enter Enrollment Details
Determine PSP
Processor
Get PIInfo
(PIType)
PI Discovery
PIInfo
Microsoft
POST ProviderInfo.BaseUrl + "/RedirectToEnroll"
(PIType, PIName, Market)
RedirectionURL
Redirect User to RedirectionURL
Potential
calls to
processor
OK
PI Payload
This is defined in PIDL doc referenced by
PIInfo.Public.PaymentInstumentDefinition
Create PI with payload
OK
Generate UI
step i details
Potential
calls to
processor
OK
Enrollment Response
If i == enrollment step count, Create PI & store PI payload
OK
Get enrollment
doc (PIInfo, i)
Collect details
for step i
POST ProviderInfo.BaseUrl + "/Enroll"
(enrollmentStep = i, 
payload = processedPayload)



